Degradation of 1,2-dichloroethane by microbial communities from river sediment at various redox conditions.

نویسندگان

  • Bas van der Zaan
  • Jasperien de Weert
  • Huub Rijnaarts
  • Willem M de Vos
  • Hauke Smidt
  • Jan Gerritse
چکیده

Insight into the pathways of biodegradation and external factors controlling their activity is essential in adequate environmental risk assessment of chlorinated aliphatic hydrocarbon pollution. This study focuses on biodegradation of 1,2-dichloroethane (1,2-DCA) in microcosms containing sediment sourced from the European rivers Ebro, Elbe and Danube. Biodegradation was studied under different redox conditions. Reductive dechlorination of 1,2-DCA was observed with Ebro and Danube sediment with chloroethane, or ethene, respectively, as the major dechlorination products. Different reductively dehalogenating micro-organisms (Dehalococcoides spp., Dehalobacter spp., Desulfitobacterium spp. and Sulfurospirillum spp.) were detected by 16S ribosomal RNA gene-targeted PCR and sequence analyses of 16S rRNA gene clone libraries showed that only 2-5 bacterial orders were represented in the microcosms. With Ebro and Danube sediment, indications for anaerobic oxidation of 1,2-DCA were obtained under denitrifying or iron-reducing conditions. No biodegradation of 1,2-DCA was observed in microcosms with Ebro sediment under the different tested redox conditions. This research shows that 1,2-DCA biodegradation capacity was present in different river sediments, but not in the water phase of the river systems and that biodegradation potential with associated microbial communities in river sediments varies with the geochemical properties of the sediments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monooxygenase-mediated 1,2-dichloroethane degradation by Pseudomonas sp. strain DCA1.

A bacterial strain, designated Pseudomonas sp. strain DCA1, was isolated from a 1,2-dichloroethane (DCA)-degrading biofilm. Strain DCA1 utilizes DCA as the sole carbon and energy source and does not require additional organic nutrients, such as vitamins, for optimal growth. The affinity of strain DCA1 for DCA is very high, with a Km value below the detection limit of 0.5 microM. Instead of a hy...

متن کامل

Differences in hyporheic-zone microbial community structure along a heavy-metal contamination gradient.

The hyporheic zone of a river is nonphotic, has steep chemical and redox gradients, and has a heterotrophic food web based on the consumption of organic carbon entrained from downwelling surface water or from upwelling groundwater. The microbial communities in the hyporheic zone are an important component of these heterotrophic food webs and perform essential functions in lotic ecosystems. Usin...

متن کامل

Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments.

Though a large fraction of primary production and organic matter cycling in the oceans occurs on continental shelves dominated by sandy deposits, the microbial communities associated with permeable shelf sediments remain poorly characterized. Therefore, in this study, we provide the first detailed characterization of microbial diversity in marine sands of the South Atlantic Bight through parall...

متن کامل

Microbial Remobilisation on Riverbed Sediment Disturbance in Experimental Flumes and a Human-Impacted River: Implication for Water Resource Management and Public Health in Developing Sub-Saharan African Countries

Resuspension of sediment-borne microorganisms (including pathogens) into the water column could increase the health risk for those using river water for different purposes. In the present work, we (1) investigated the effect of sediment disturbance on microbial resuspension from riverbed sediments in laboratory flow-chambers and in the Apies River, Gauteng, South Africa; and (2) estimated flow ...

متن کامل

Catalytic Degradation of Dichloroethane Using Cu Nanoparticles Under Reducing Conditions

Dichloroethane is a raw material used for the manufacture of vinyl chloride monomer (VCM) and therefore has very often been detected as a contaminant in the groundwater nearby the VCM manufacturing plant. Zero-valent iron is capable of degrading a wide array of chlorinated contaminants in groundwater such as trichloroethylene, vinyl chloride, carbon tetrachloride, and tetrachloroethane. However...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Water research

دوره 43 13  شماره 

صفحات  -

تاریخ انتشار 2009